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ABSTRACT

The artificial immune system (AIS) algorithm is a heuristic technique inspired by the biological immune 
system. The biological immune system has been proven to be a robust system that defends our body 
from any pathogen attacks. This paper presents a hybrid paradigm by implementing the Hopfield neural 
network integrated with enhanced AIS for solving a 3-Satisfiability (3-SAT) problem. Fundamentally, a 
3-Satisfiability problem is used as an ideal optimisation problem by neural network practitioners in their 
research. The core impetus of this study was to compare the performance of artificial immune system 
(AIS) algorithm and brute-force search (BFS) algorithm in doing 3-SAT logic programming. Microsoft 
Visual C++ 2013 was used as a dynamic platform for training, simulating and testing of the network. 
We restricted our analysis to 3-Satisfiability (3-SAT) clauses. The performances of both paradigms were 
analysed according to the following measures, namely, global minima ratio, global Hamming distance, 
fitness landscape value and computational time. The experimental results successfully depicted the 
robustness of the AIS compared to the BFS algorithm. The work presented here has profound implications 
for future studies of AIS to solve more complicated NP problems.   

Keywords: Artificial immune system algorithm, brute-force search algorithm, Hopfield network, 
3-Satisfiability, logic programming

INTRODUCTION

Hybrid computational models in artificial 
intelligence have been mushrooming and 
producing a prolific amount of research. In this 
paper, we proposed a hybrid computational 
model by implementing an artificial immune 
system (AIS) algorithm incorporated with a 
Hopfield neural network to do a 3-SAT logic 
programming. Technically, the combination 
of Hopfield neural network, constrained 
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satisfiability problem and searching techniques (metaheuristics) in logic programming as a 
hybrid computational network is still novel in artificial intelligence. 

Firstly, the artificial immune system algorithm (AIS) is a vibrant metaheuristic paradigm, 
enthused by the complex biological immune system (Dasgupta et al., 2003). Furthermore, 
AIS can behave as an alternative machine learning network and feasibly be implemented to 
resolve zillions of constraint optimisation problems (Layeb, 2012). The core advances within 
AIS have been dedicated to three important immunological principles namely, the immune 
clonal selection, immune networks and negative selection (Timmis & Neal, 2001). As a matter 
of fact, most AIS practitioners have focussed on the learning and memory mechanisms of the 
immune system in order to have it resemble the human immune system. A prolific volume of 
works on artificial immune systems from the breakthrough research by Farmer et al. (1986) 
has transformed the AIS into a vital metaheuristic paradigm to solve numerous problems. 

The neural network is considered as one of the most celebrated fields in artificial 
intelligence (AI) and mathematical computational studies (Rojas, 1999). The framework of 
artificial neural network is inspired by the biological nervous system to model the computations 
engaged in by the human brain (Zinovik et al., 2008). Strictly speaking, various types of neural 
networks have been sprouted such as the Hopfield network presented by Hopfield and Tank 
(1985). The Hopfield neural network is highlighted as a simple recurrent network equipped 
with an efficient associative memory. Moreover, the network can store numerous memories 
analogously to the human brain (Sathasivam, 2010). Additionally, it is a division of the artificial 
neural network that practically can be implemented to solve various mathematical problems 
such as the combinatorial optimisation problem, pattern recognition and hard satisfiability 
problem (Haykin, 1992). 

Logic programming is a promising computational field that can be applied in solving 
numerous optimisation problem. Basically, logic programming can be delineated as an 
optimisation problem according to the constraint satisfiability outlook (Kowalski, 1979). 
Hence, logic programming requires specific clauses; the 3-SAT clause as a combinatorial 
optimisation problem. Generally, 3-SAT involves a massive search space, since it was depicted 
as a NP-hard problem (Tobias & Walter, 2004). In this paper, we used the 3-SAT clauses as the 
problem in logic programming. In the same way, the 3-SAT problem is applied and integrated 
in an artificial neural network to search for optimised global solutions (Aiman & Asrar, 2015). 
Therefore, the conventional model developed by Abdullah (1993) was the breakthrough in 
logic programming of neural networks.

Neuro-searching paradigms are getting more attention by researchers eager to solve 
computational problems (Luke, 2013). The conventional method, the exhaustive search (ES) 
and heuristics method, can be implemented as the searching technique in any constraint 
optimisation problem (Matsuda, 1998). Hence, we proposed the artificial immune system (AIS) 
as the neuro-searching technique (metaheuristic) in this study. In this research, we proposed 
an enhanced metaheuristic method, the artificial immune system (AIS) algorithm incorporated 
with the Hopfield network to hunt for the satisfied assignments within the stipulated time. The 
main contribution was the implementation of the artificial immune system (AIS) algorithm 
as a searching technique integrated with the Hopfield neural network in doing 3-SAT logic 
programming. The robust searching paradigm assisted the hybrid model to achieve greater 
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convergence in solutions, better stability and faster searching time. In addition, we introduced 
the conventional searching method, brute-force search (BFS) algorithm, incorporated with the 
Hopfield neural network as the searching tool.

The overall structure of this paper had been structured systematically as follows. In 
Section 2, we discuss the fundamental notions of the Boolean Satisfiability Problem and the 
specific 3-Satisfiability concept. In Section 3, we emphasise the Hopfield neural network, 
content addressable memory (CAM) and logic programming in 3-SAT. Section 4 presents the 
neuro-searching paradigms implemented in this study, the artificial immune system (AIS) and 
brute-force search (BFS) algorithm. In Section 5, the implementation of the hybrid paradigms 
are discussed briefly. Section 6 presents the complete experimental results and expositions. 
Finally, Section 7 presents the conclusion and some recommendations for future research.

THE SATISFIABILITY (SAT) PROBLEM

Strictly speaking, the satisfiability problem (SAT) is one of the most celebrated topics in 
prepositional calculus and computer science. The SAT problem can be demarcated as the 
process of finding an ideal assignment based on Boolean values in order to ensure the formula 
is satisfied (Vilhelm et al., 2005). Hence, the core impetus of a satisfiability study is to decide 
the existence of an ideal assignment of truth values (assignments of 0 or 1 to each of the 
variables) to variables that produce any satisfied conjunctive normal form (CNF) formula 
(Gu, 1999). Technically, an immense amount of NP problems can be transformed in terms of 
SAT. Given an insight defining whether a SAT problem assignment is satisfiable or not, one 
can discover a satisfying assignment in time and linear based on the number of variables or 
literals (Ullman, 1975). Therefore, there is a possibility of transforming an NP problem in SAT 
in polynomial time. For instance, when we have a constraint problem of size n, there are 2n   
possible assignments and also l literals to the set for each assignment where such technique 
requires O(1.2n) operations (Sathasivam, 2010).

3-Satisfiability (3-SAT)

In this section, we highlight 3-Satsifiability (3-SAT), which is a paradigmatic NP-complete 
problem. Essentially, the 3-Satisfiability (3-SAT) problem can be described as a mapping 
conundrum from truth values based on logic programming in 3-SAT. Technically, 3-SAT 
can be delineated as a conjunctive normal form formula with a collection of clauses,  each 
comprising exactly and strictly three literals per clause (Vilhelm et al., 2005). Therefore, the 
3-SAT paradigm can allow binary values of each variable, which are 1 or -1. In addition, the 
3-SAT problem can be clinched as a non-deterministic problem (Tobias & Walter, 2004). 

The four fundamental aspects of the 3-SAT problem in the conjunctive normal form (CNF) 
can be summarised as follows:

1. The SAT formula comprises an array of  variables,  inside each clause. For a 
3-SAT problem, we strictly limited .

2. A set of m clauses in a Boolean formula.  
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3. A set of  literals. In 3-SAT, we considered three literals in each clause. Each clause, ck, 
consisted of only literals combined by the logic operator OR. 

        

4. The literals can be the variable itself or the negation of the variable. 

      

In this paper, a randomised 3-SAT formula, which consisted of strictly three clauses and three 
literals, is emphasised. For example:

                  (1)

As an illustration, we represented the 3-SAT formula in CNF form as P in equation (1). 
Generally, the formula can be formed in numerous combinations (randomised) as the number 
of atoms can be different, excluding the literals that were rigorously equal to 3 for each clause. 
Correspondingly, the greater number of literals per clause will maximise the probabilities for 
a clause to be satisfied (Kowalski, 1979). 

Neuro-Searching Paradigm

Brute-force search algorithm. Brute-force search (BFS) algorithm can be defined as a 
local search technique for an element with a specific property among combinatorial aspects 
including permutations, combinations, logics, satisfiability or subsets of a set (Mark & Lee, 
1992). Additionally, the BFS algorithm will brutally search for total potential clause, even if 
the search dimension gets bigger and more complex (Rojas, 1999). Technically, the brute-force 
search algorithm is the simplest algorithm for checking the logic satisfaction problem. Even 
though BFS is theoretically easy to implement and frequently effective, it is occasionally 
considered not robust (Nievergelt, 2000). Despite the disadvantages, an exhaustive search 
can be guaranteed to converge towards the solution (satisfied clause) for the entire search 
space. Consequently, an exhaustive search consumes more computation time in searching for 
the satisfied interpretation completely (Zinovik et al., 2008). On the other hand, the entire bit 
strings (interpretation) will be collapsed when any one of the clause is not satisfied. 

In our exploration, we pinpointed the complexity of the hybrid network when we 
ventured to work with more neurons. The CPU time was slowed down when we increased the 
complexity of the hybrid network. Given any 3-SAT problem, there are theoretically   satisfying 
assignments (Gu, 1999). To sum up, the computation complexity is represented as  . For the 
BFS algorithm, the satisfied assignment is gained after performing a brutal ‘trial and error’ 
procedure. Henceforth, the correct assignment will be stored in the Hopfield’s artificial brain in 
the form of content addressable memory (CAM). The brute-force search algorithm performance 
has been explored by Aiman and Asrar (2015), Zinovik et al. (2008) and Nievergelt (2000). In 
this paper, we implemented the BFS algorithm with the Hopfield neural network as a hybrid 
network based on logic programming to solve 3-SAT problems (3SAT-BFS).
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Artificial immune system algorithm. The Artificial Immune System (AIS) algorithm has 
emerged as a brand new metaheuristic technique based on the human immune system. The 
artificial immune system was popularised by Farmer et al. (1986), who modelled Jerne’s 
Immune network theory. On top of that, the artificial immune system (AIS) algorithm can 
be illustrated as a distributed network able to do parallel processing (Afshinmanesh et al., 
2005). The core developments of the artificial immune system (AIS) revolved around three 
fundamental immunological concepts, namely, the immune clonal selection, negative selection 
technique and immune network (Aickelin, 2008). 

Researchers have investigated the learning and memory capability of the clonal selection 
and immune network theory. The AIS offers properties that are suitable for a computational 
model, such as adaptation, recognition, learning, robustness, memory and scalability (De 
Castro & Timmis, 2002). 

The biological immune system can be classified into two key defence methods (De Castro 
& Von Zuben, 2002): 

a) Innate immune system, which represents the non-specific defence mechanism and 
biological immune defences present since birth. Moreover, the innate immune system 
comprises the complete chemical properties contained in the antigen.

b) Adaptive immune system, which depicts the entire defences learnt over time. Additionally, 
adaptive immunity comprises a ‘memory’ that creates upcoming reactions against a 
particular antigen efficiently.

Furthermore, the complex interactions between entities within each level will ensure the 
immune system shields the body after any harmful entity and exogenous agent, known as an 
antigen, has attacked it. A particular form of cell, identified as the B-cell, leads in the destruction 
of the antigen. Hence, the B-cell produces antibodies that bind with the antigens and mark 
them for damage (Dasgupta et al., 2003). The strength of the antibody or antigen binding is 
called antigenic affinity (Layeb, 2012). Robust features of the immune system have boosted 
its adaptation to information technology for solving numerous problems. 

Therefore, the proposed hybrid technique is a novel technology as most researchers only 
focus on the standalone Hopfield neural network or metaheuristic to solve 3-satisfiability 
problems. The brute force search (BFS) is a state-of-the-art technique, extensively applied to 
solve 3-satisfiability problems. Hence, the artificial immune system (AIS) algorithm needs to be 
compared with the brute force search (BFS) in order to highlight its computational capability. 
In this paper, we focussed on the clonal selection that was implemented in our binary AIS. 

Clonal selection. The remarkable feature in our biological immune system is the capability 
to build antibodies to combat new antigens or pathogens (Dasgupta et al., 2011). Hence, the 
immune clonal selection process depicts the fundamental structures of an immune response 
towards an antigenic stimulus. It advances the idea that only the antibodies can identify the 
antigen proliferate, and therefore, they are the cells nominated to do the job (Timmis et al., 
2008). Specifically, B-cells will produce antibodies if any incoming antigen is discovered. Then, 
the particular B-cells distinguish the antigen proliferate via the cloning process. Significantly, 
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the main event during clonal mutation is somatic hypermutation, whereby genetic maturation 
and variation are improved (Layeb, 2012). The B-cells with higher affinity will be differentiated 
into plasma and memory cells, while the worst one will be destroyed. 

Binary artificial immune algorithm. We proposed a binary artificial immune system based on 
the immune clonal selection perspective. Technically, the binary artificial immune system was 
implemented by several researchers for binary optimisation and pattern recognition. Previous 
works on binary artificial immune system include Tang et al. (1997), who proposed that the 
binary AIS be incorporated with the immune response network theory and Layeb (2012), who 
introduced the affinity-based interaction for the artificial immune system (AIS) algorithm 
integrated with the TABU search technique.

In our paper, we develop a hybrid paradigm by implementing the Hopfield network and 
binary AIS to do a 3-SAT logic programming (HNN-3SATAIS). In our exploration of binary 
AIS, the binary strings or Boolean interpretations were illustrated as the B-cells. Firstly, we 
generated and initialised 100 B-cells that represented the initial population size. Generally, 
any massive and diverse population represented a massive space search of solutions that can 
lead to global solutions. Moreover, a smaller population size can contribute to local minima 
solutions (Layeb, 2012).

For instance, if an antigen or pathogen attacks the organism, the antibodies (B-cells) that 
recognise these antigens survive. Secondly, for every iteration, the affinity of every B-cell is 
computed. The affinity measure was the total amount of satisfied clauses in the 3-SAT formula. 
After that, the best five B-cells were selected. By implementing the roulette wheel mechanism, 
the selected B-cells were allowed to be cloned and duplicated. Therefore, the newly produced 
B-cell population comprised 200 cloned B-cells. Then, we normalised the B-cells. Thus, the 
antibodies existing in memory response achieved a higher average affinity than those of the 
initial primary response (Coello & Cortes, 2005). It is called the maturation of the immune 
response process. 

The mutation process in AIS is basically similar to the one in genetic algorithm. The 
process is improved by the ‘somatic’ principle, whereby the nearer the match, the more 
disruptive the mutation (Timmis & Neal, 2001). In order to obtain a satisfactory interpretation, 
somatic hypermutation might be very useful. The flipping process will improve the B-cells 
(interpretation) to achieve the best affinity value. The best B-cells will be selected as the 
candidate cells and stored in the memory cell to be retrieved to combat pathogenic attacks. 
The aim is to preserve the diversity between antibodies that are composed of the memory set. 
In our context, any satisfied interpretation will be stored in 
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CAM to be recalled by the network. Thus, it will converge to the global solution. The 
algorithm of our proposed binary AIS can be simplified as follows:CAM to be recalled by the network. Thus, it will converge to the global solution. The 

Step 1  

Generate 100 random  (random assignments)  

Step 2  

Check the affinity for each   

 

Step 3 

Take the best five to be cloned. 

 

where is the number of population clone that we want to produce. (Set to 200) 

Step 4 

Normalise the 200  clones:	  

Step 5 

Calculate the number of mutations for each  clone 

 

Step 6 

Based on Nb, mutate the best and the worst  based on the flipping of the 1 and -1. 

Step 7 

Check the affinity of the .  

if has a local maxima,  

store in memory cell 

otherwise,   is the best solution 

 

Neuro-Logic in the Hopfield Neural Network

Hopfield neural network. Inaugurated by John Hopfield in 1982 (Hopfield & Tank, 1985), the 
Hopfield model is widely used to elucidate various optimisation problems. Hence, the model 
is constructed by connecting a large number of simple processing interconnected units called 
neurons. Strictly speaking, the interconnected units in Hopfield neural networks are known 
as the binary threshold unit (Haykin, 1992), which consider the binary values, 1 and -1. After 
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that, the state of the output is maintained until the artificial neuron is updated. In general, the 
network is usually designed to limit the possible value of ai (Aiyer et al., 1990). Fundamentally,   
entails the following operations:

                     (2)

whereby wij denotes the weight from unit j to i. Sj refers to the state of unit j and ξi denotes the 
threshold of unit i. The connection in the Hopfield net normally has no connection with itself, 
and wij = 0 and connections are symmetric or bidirectional wij = wji (Sathasivam et al., 2013). 
In this paper, the network comprises N renowned neurons, where each is defined by the well-
known Ising model of a magnetism spin variable. In this model, the neuron permitted only a 
bipolar state Si ∈{1, -1}. Traditionally, the update of neurons is based on Si →  sgn(hi), where 
hi is the local field between the neurons. The computational model will explicitly generalise 
to a higher order connection. Thus, the local field can be computed using:

       hi = wij
2( )S j +wi

1( )

j
∑                 (3)

Basically, the weight or connection strength in the Hopfield neural network is always 
symmetrical. In a higher order connection, the underlying neuron update is retained:

       Si t +1( ) = sgn hi t( )⎡
⎣

⎤
⎦                (4)

A point to ponder is the value of a neuron change asynchronously in order to minimise the 
energy and lastly, converge it to equilibrium form (Matsuda, 1998). Cost function is associated 
with energy function for minimising the inconsistencies of the 3-SAT constraint. This vital 
property guarantees that the energy will decrease monotonically while following the activation 
system. The energy function for the Hopfield neural network is denoted in equation (5).

       E = −1
3

wijk
3( )SiS jSk

k
∑

j
∑

i
∑ −

1
2

wij
2( )SiS j −

j
∑

i
∑ wi

1( )S j
i
∑            (5)

Specifically, Hopfield’s energy function is important since it will determine the degree of 
convergence of the network (Ionescu et al., 2010). On top of that, the energy minimisation 
features make the Hopfield model harmonious with other optimisation algorithms.

Content addressable memory (CAM). The Hopfield network is a contender for information 
processing systems due to its dynamic properties that unveil stable states that work as a basin 
of attraction towards which adjacent states can progress in time (Michel & Farrell, 1990). The 
Hopfield model has been shown to implement content addressable memory (CAM) effectively 
(Holland, 1975). Theoretically, content addressable memory can be demarcated as particular 
memories that contain information that can be retrieved from the given address of the memory 
location where the data is stored (Ionescu et al., 2010). Effective CAM can store an enormous 
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library of memory in form of patterns and is able to recall particular patterns correctly when 
the network gets ‘excited’.  In this paper, we utilise the features of CAM to store the satisfied 
assignments that corresponded to the 3-SAT logical clause. The consistency of 3-SAT 
assignments (graded storage) was retrieved with the aid of CAM during the training process. 
With the projection storage rule, CAM was incorporated with search algorithms, namely the 
brute-force search (BFS) algorithm and the Artificial Immune System (AIS) algorithm to do 
a 3-SAT in the Hopfield network.

Logic programming in Hopfield network. Constraint satisfaction has been a subject of 
research in the field of artificial intelligence for many years. Logic programming is one out of 
many types of constraint optimisation combinatorial problems (Sathasivam et al., 2013). The 
recent work on logic programming in the Hopfield network was coined by Wan Abdullah, who 
applied the Hopfield neural network with Horn satisfiability clauses (Abdullah, 1993). Moreover, 
the significant work by Pinkas and Dechter (1995), which is about energy minimisation by 
integrating logic programming and the Hopfield neural network. Weight or synaptic strength 
determination based on Sathasivam’s method for Horn logic programming was proven to be 
effective in reducing the local minima energy and achieving global convergence (Sathasivam 
& Wan Abdulllah, 2008). In this paradigm, 3-SAT logic was considered a constrained model 
and the Hopfield network was exploited to minimise constraint inconsistencies. Hence, we 
implemented logic programming in Hopfield for the 3-SAT clause with the neuro-search 
algorithms such as the brute-force search and the artificial immune system.

Implementation of 3SAT-AIS logic programming in the Hopfield neural network  

i. Firstly, convert all the 3-SAT clauses into prepositional Boolean algebra with correct 
operators.

ii. Classify the neuron to ground neuron, respectively. Initialise the entire weights to zero.

iii. Derive and form a cost function that is associated with the negation of all 3-SAT clauses, for 
instance, X =

1
2
1+ SX( )  and X =

1
2
1− SX( ) . SX =1  (True) and SX = −1 (False). Multiplication 

is denoted as conjunction and addition symbolises the disjunction of clauses.

iv. Compare cost function for 3-SAT with energy, E, in order to obtain the values of the 
connection strengths or weights (Sathasivam & Wan Abdullah, 2008).

v.  mplement the AIS algorithm to verify the 3-SAT clause satisfaction. The satisfied 
interpretations are graded in Hopfield’s brain as content addressable memory storage.

vi. Next, randomise the states of the corresponding neurons. Calculate the corresponding local 
field hi (t) . The hybrid network experiences a sequences of energy relaxation processes 
(Sathasivam, 2010) based on the following formula: 

       dhi
dt

= R dhi
dt

                 (6)

 where R is the rate of relaxation. Given that the final state is steady for five runs, we 
considered it the final state.
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vii. Compute the corresponding final minimum energy, E, for the final state using the Lypunov 
equation. The process of authentication of the final energy will classify whether it is global 
minima or local minima. After that, compute the global Hamming distance for each. Record 
the computation time. 

viii. Calculate the fitness landscape measure of the energy landscape based on the Kauffman 
model (Imada & Araki, 1997): 

      f = 1
t0 p

mv (t)
v=1

p

∑
t=1

t0

∑ whereby, mv (t) = 1
N i

v

ξ i

v

S (t)
i=1

N

∑           (7)

THEORY IMPLEMENTATION

Firstly, we generated a randomised 3-SAT formula with three clauses. Secondly, we initialised 
the early states for the 3-SAT clauses in the neurons. Then, the hybrid model was evolved 
swiftly until the last state was reached. When the final state was achieved, Equation (4) was 
used to update the neuron state. The network relaxation process took place and can be computed 
using Equation (3). After that, the stability of the final state was verified. The stable state was 
considered when the state obtained was steady for five runs. 

Pinkas and Dechter (1995) emphasised that allowing the ANN to evolve would contribute 
to a stable state, where the energy function would be obtained in optimum and equilibrium state. 
Consequently, the corresponding final energy for the stable state was calculated. The solution 
is considered a global minima solution if the difference between the final energy and the global 
minimum energy is within the termination criteria. Furthermore, the algorithms were repeated 
100 times with 100 neuron combinations per simulation. The termination criteria for the final 
energy was fixed as 0.001. Sathasivam et al. (2013) emphasised that 0.001 was chosen because 
it offered a better performance to reduce statistical errors. We compared the following measures: 
global minima ratio, global Hamming distance, fitness landscape value and computation time 
for the brute-force search (3SAT-BFS) and the Artificial Immune System (3SAT-AIS).

RESULTS AND DISCUSSION

Global Minima Ratio and Global Hamming Distance

Global minima ratio is delineated as the ratio between the global solutions divided by the total 
number of iterations (Sathasivam, 2010). Since each simulation produced 10,000 alternate 
solutions, we computed the ratio of global minima to check the performance of each algorithm. 
In our context, the global Hamming distance was equivalent to the distance of the bits between 
the training state and global state (retrieved state) of the neurons during the energy relaxation 
procedure. 

Table 1 describes the performance of 3SAT-BFS and 3SAT-AIS according to the global 
minima ratio and global Hamming distance. According to Table 1, the global minima ratio for 
3SAT-AIS was close to 1, compared to the traditional 3SAT-BFS. Almost all solutions produced 
by 3SAT-AIS were global solutions. B-cells with high and improving affinity (fitness) in AIS 
were able to search the solution optimally compared to the traditional BFS. The complexity 
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of the searching technique in the Hopfield network via AIS was reduced dramatically. Hence, 
more solutions had achieved the global minima compared to the local minima. The chances 
for AIS algorithm to converge to global minima were higher compared to BFS. As the number 
of neurons increased, the complexity of the network increased, since the size of the constraint 
enlarged indefinitely. In this case, the AIS algorithm was able to sort the possible candidate 
solution (B-cells) effectively (De Castro & Von Zuben, 2002) and could cope with more 
constraints compared to the BFS. The problem with 3SAT-BFS was the nature of the brute-
force search that deployed an intensive training process in hunting the correct neuron states. 
Therefore, the updating rule for 3SAT-BFS generated additional abrupt energy surfaces and 
more solutions obtained stuck at the local minima. Based on the results, 3SAT-BFS was not 
able to cope with the increasing amount of constraints and did not produce a promising global 
minima ratio as the number of neurons increased. 

Table 1 
Global Minima Ratio and Global Hamming Distance for 3SAT-BFS and 3SAT-AIS  

Number of 
Neurons (NN)

Global Minima Ratio Global Hamming Distance
3SAT-BFS 3SAT-AIS 3SAT-BFS 3SAT-AIS

10 0.9941 1.0000 0.00945 0.00122
20 0.9902 0.9994 0.01920 0.00453
30 0.9816 0.9988 0.02451 0.00865
40 0.9744 0.9936 0.02876 0.01394
50 0.9628 0.9914 0.03554 0.01985
60 0.9550 0.9885 0.05002 0.02644
70 - 0.9852 - 0.02806
80 - 0.9737 - 0.03441
90 - 0.9680 - 0.04682
100 - 0.9625 - 0.05296

In comparison, 3SAT-AIS constantly achieved better results than 3SAT-BFS if we consider 
the global Hamming distance measure. Hence, given that the global Hamming distance was 
close to zero, the distance between the stable states and global states was almost zero. The 
global Hamming distance depicted the precision of the bit pattern compared to the expected 
bit output. The selection of B-cells based on affinity (fitness) helped the network to reach 
the correct solution effectively. In addition, the efficiency of the AIS algorithm in choosing 
candidate solutions (B-cells) reduced the complexity of the network. This provided an extra 
period for the whole network to relax via Equation (6). On the contrary, the brute-force search 
algorithm highlighted the trial-and-error procedure during checking of the clause satisfaction 
procedure. The 3SAT-BFS required time to arrive at solutions and retrieve the wrong bit pattern 
due to lack of relaxation time. The retrieved 3-SAT pattern in the 3SAT-AIS had better accuracy 
compared to the 3SAT-BFS (Sathasivam, 2010). 

The proposed model, 3SAT-AIS, was able to withstand up to 100 neurons. The capability 
to sustain a massive number of neurons was due to the interesting feature of AIS algorithms 
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that can avoid non-improving B-cells (local maxima assignments) during searching. As the 
number of neurons increased, 3-SAT constraints increased dramatically. Based on the results, 
the 3SAT-BFS was not able to cope with larger constraints and did not produce any results 
when the number of neurons exceeded 60. On the other hand, B-cells in AIS were capable of 
adapting to higher constrained problems due to somatic hypermutation, which always improves 
the affinity (fitness) of B-cells (Aickelin, 2008). Thus, high stability in 3SAT-AIS reduced 
the spurious minima, which caused the retrieved solutions to become local minima solutions. 

Landscape Fitness Value

Viewing neural dynamics based on energy landscape can provide useful information about 
the efficiency of the algorithm. Figure 1 demarcates the variety in the fitness landscape value 
recorded for 3SAT-BFS and 3SAT-AIS. The neuron state retrieved from 3SAT-AIS was proven 
(from Table 1) to have a smaller global Hamming distance. As a result, the difference between 
the retrieved states and the training states was almost similar. Consequently, the difference in 
energy landscape was almost flat, since the fitness value was zero. The more rugged energy 
landscape in 3SAT-BFS was due to more solutions getting trapped into the local minima.
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Computation Time

Computation time can be defined as the total duration for the algorithm to produce the global 
solutions and training process. Table 2 portrays the computation time for the proposed model, 
3SAT-AIS, with the traditional method, 3SAT-BFS. According to the computational time 
measured, the BFS algorithm spent comparatively more computation time (CPU time) compared 
to the AIS paradigm. Theoretically, the training process using BFS required extra training time 
due to the trial-and-error process in getting the satisfied assignments. The whole built-up string 
of solution can collapse if one of the 3-SAT clauses is not satisfied. When this happens, BFS 
needs to reset the search space. On the contrary, when we applied AIS algorithms, the CPU time 
was faster due to the efficiency of the B-cells to improve towards the desired solution. B-cells 
with high and low affinity are considered in finding the best B-cells (Timmis & Neal, 2001). 
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Furthermore, 3SAT-AIS experienced less computation burden during the training processes 
as compared to 3SAT-BFS. As the number of neurons increased, 3-SAT constraint increased 
dramatically. The BFS algorithm required more time to arrive at the correct solution. This trend 
was consistent for 3SAT-AIS, even though the network complexity increased from NN=10 
until NN=100. On the contrary, the 3SAT-BFS that managed to sustain up to 60 neurons. Under 
those circumstances, additional time was needed to relax to global solution as the number of 
neurons increased.

Table 2 
Computation Time for 3SAT-BFS and 3SAT-AIS  

Number of 
Neurons

Computation Time (in seconds)
3SAT-BFS 3SAT-AIS

10 7.23 3.28
20 92.55 13.8
30 456.0 26.54
40 1134.7 64.92
50 7440.0 88.27
60 55003.4 129.5
70 - 204.6
80 - 295.3
90 - 345.7
100 - 422.0

CONCLUSION

We presented a superior algorithm for doing 3-SAT incorporated with an artificial immune 
system (AIS) algorithm in the Hopfield network in this paper. An artificial immune system 
(AIS) was incorporated with the Hopfield neural network (3SAT-AIS) for doing 3-SAT logic 
programming. The hybrid paradigm was able to decrease the complexity of the network, 
as the number of 3-SAT clause or constraint increased. The proposed model was compared 
with the conventional technique, the brute-force search (BFS) hybridised with the Hopfield 
neural network (3SAT-BFS). The theory was supported by the tremendous differences in both 
performances in aspects of the global minima ratio, global Hamming distance, fitness landscape 
measure and the computation time. According to the experimental results, the proposed 
algorithm (3SAT-AIS) gave us the global minima ratio of approximately 1, faster computation 
time, smaller global Hamming distance and a consistent fitness landscape value, which was 
almost 0 compared to 3SAT-BFS. In essence, the proposed 3SAT-AIS was more robust than 
the 3SAT-BFS in the aspect of an exceptional global minima ratio, lower global Hamming 
distance, better fitness landscape value and faster computation time in doing random 3-SAT 
logic programming. For future work, we suggest that the AIS algorithm be used to solve other 
types of satisfiability problems such as maximum-satisfiability, minimum-satisfiability and 
quantified satisfiability problem. 
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